
Implementation of a Probabilistic Neural Network for Multi-spectral Image
Classification on an FPGA Based Custom Computing Machine

Marco A. Figueiredo
marco@fpga.gsfc.nasa.gov

SGT, Inc. / NASA Goddard Space Flight Center
Greenbelt, Maryland , USA

Clay Gloster
gloster@eos.ncsu.edu

Department of Electrical & Computer Engineering
North Carolina State University, Raleigh, NC, USA

Abstract

As the demand for higher performance computers for
the processing of remote sensing science algorithms
increases, the need to investigate new computing
paradigms is justified. Field Programmable Gate Arrays
enable the implementation of algorithms at the hardware
gate level, leading to orders of magnitude performance
increase over microprocessor based systems. The
automatic classification of space borne multispectral
images is an example of a computation intensive
application that only tends to increase as instruments
start to explore hyperspectral capabilities. A probabilistic
neural network is used here to classify pixels of a multi-
spectral LANDSAT-2 image. The implementation
described utilizes a commercial-off-the-shelf FPGA based
custom computing machine.

1. Introdution

A new generation of satellites is under implementation
by the National Aeronautics and Space Administration
(NASA) to compose the Earth Observing System (EOS).
The instruments aboard the EOS satellites not only extend
the observation life of the current system, but they also
expand the capabilities of remote sensing scientists to
better understand the Earth’s environment. Along with
the scientific advancements of the new missions, it is also
necessary to explore new technologies that facilitate and
reduce the cost of the data analysis process. In order to
process the high volume of data generated by the new
EOS satellites, NASA is constructing the Distributed
Active Archive Centers (DAACs), an expensive and
powerful parallel computing environment. Scientists will
be able to request certain data products from these centers

for further analysis in their own computing systems. A
new technology that could bring the processing power to
the scientist’s desk is highly desirable. The ultimate
scenario would be for the scientist to request the data
directly from the satellite along with historic data from an
archive center.

The advent of Field Programmable Gate Array (FPGA)
enables a new computing paradigm that may represent the
future for remote sensing scientific data processing.
Several applications utilizing FPGA based computers
have been developed showing orders of magnitude
acceleration over microprocessor based systems
[3],[4],[5]. Moreover, microprocessors and FPGAs share
the same underlying technology – the silicon fabrication
process. Therefore, it is reasonable to conclude that FPGA
based machines will always outperform microprocessor
based systems by orders of magnitude [6],[7].

The Adaptive Scientific Data Processing (ASDP) group
at NASA’s Goddard Space Flight Center (GSFC) has
been investigating the utilization of FPGA based
computing, also kown as adaptive or reconfigurable
computing, in the processing of remote sensing scientific
algorithms. The first prototype developed by the group
utilized a comercial-off-the-shelf (COTS) reconfigurable
accelerator in the implementation of an automatic
classifier for the LANDSAT-2 multispectral images. The
classifier algorithm utilizes a probabilistic neural network
(PNN). The results show an order of magnitude
performance increase over a high-end workstation. This
paper presents details of the FPGA design and is
organized as follows. Section 2 describes the PNN
algorithm. The implementation of the FPGA custom
computing machine is then presented. Finally, a
performance analysis is given.

2 The PNN multispectral image classifier

Remote sensing satellites utilize multispectral
scanners to collect information about the Earth’s
environment [8]. The images formed by such instruments
may be seen as a set of images each corresponding to one
spectral band. A multispectral image’s pixel is
represented by a vector of size equal to the number of
bands. The combination of the multiple spectrum
measurements represented by each element of the pixel
vector determine a signature that correspond to a physical
element. Through the observation of an image and the
comparison of certain pixels to elements from known
locations (in-situ measurements), a scientist is able to
identify signatures and compose classes. These classes
contain representations of multispectral pixels that are
closely related. Several neural network schemes have been
devised for the automatic classification of multispectral
images [1]. One in particular, the Probabilistic Neural
Network (PNN) classifier presented good accuracy, very
small training time, robustness to weight changes, and
negligible retraining time. A description of the derivation
of the probabilistic neural network (PNN) classifier is
given in Chettri et al., 1993 [2].

The same algorithm and data set used in [2] were used
in this work to demonstrate the effectiveness of FPGA
based computing. The Blackhills (South Dakota, USA)
data set was generated by the Landsat 2 multispectral
scanner (MSS). The image’s 4 spectral bands (0.5-0.6
um, 0.6-0.7 um, 0.7-0.8 um, and 0.8-1.1 um) correspond
to channels 4 through 7 of the Landsat MSS sensor. There
are 262,144 pixels corresponding to a 512x512 image
size, and each pixel represents 76m x 76m on the ground;
the images were obtained in 1973. The ground truth was
provided by the United States Geological Survey. Table 1,
extracted from [2], shows the distribution of the image
data.

Training
Number of

Pixels

Entire Image
Number of

Pixels

Class name
USGS – Level

1
0 453 6676 Urban
1 478 42432 Agricultural
2 464 16727 Rangeland
3 482 198868 Forested Land
6 368 1441 Barren

Table 1 - Distribution of data, Blackhills data set

Figure 1 illustrates the PNN classifier procedure. Each
multispectral pixel, represented by a vector, is compared
to a set of pixels belonging to a class. Equation 1 is used
to derive a value that indicates the probability that the

pixel fits in that class. A probability value is calculated for
each class. The highest value indicates the class in which
the pixel fits in.

3 The FPGA implementation

Field Programmable Gate Arrays (FPGA) are logic
devices that offer in-circuit re-programmability. Adaptive,
or reconfigurable, computing is an emerging technology
that utilizes FPGAs to implement computation intensive
algorithms at the hardware gate level. As a result,
acceleration rates of several orders of magnitude faster
than current computers are attainable.

A set of FPGA devices arranged in some kind of
programmable interconnection network is called a
reconfigurable or adaptive computer. Current
reconfigurable computers function like coprocessor cards
which are plugged into desktop or large computer
systems, called the host. By attaching a reconfigurable
coprocessor to a host computer, the computation intensive
tasks can be migrated to the coprocessor forming a more
powerful system.

The first task in the implementation of an application
is to select the adaptive coprocessor that best matches the

Figure 1 - PNN Image Classifier

Equation 1- PNN classifier

algorithm in question. At the current state of the
technology, there is no single COTS coprocessor card that
will give best performance in most applications. A
preliminary analysis of the PNN classifier indicated that
the Giga Operations Spectrum System [9] presented the
best architecture for its modularity and expandability.

The Giga Operations Spectrum System, shown in
figure 2, is composed of a PCI bus based motherboard
and 16 plug-in modules, 4 stacks of 4 modules each.
These plug-in modules contain two Xilinx FPGA devices
and provide the gate capacity based on the type of FPGA
device being used. Our design was developed based on
Xilinx XC4013E FPGA devices with an equivalent
13,000 gates per each device, or 26,000 gates per X-213
module.

3.1 Algorithm partitioning

The computation intensive portion of the multispectral
image classification algorithm resides on the calculations
within the PNN classifier. The user interface, data storage
and IO, and adaptive coprocessor initialization and
operation is performed on the host computer. The PNN
classifier was mapped to a single X213 module. Figure 3
illustrates the algorithm partitioning.

3.2 FPGA application design

Figure 4 shows the architecture of the X213 module.
The YFPGA has a direct connection to the host through
the HBUS. The memories between the two FPGAs were
not used. An interconnection bus was used to transfer data
from the X to the YFPGA instead. The HBUS was also
extended from the Y to the XFPGA to allow the host to
read back the results of the YFPGA. Only the SRAM
banks on the XMEMBUS and HMEMBUS were utilized.

Due to limited number of gates available on a single
FPGA, it was not feasible to use floating point arithmetic
in our implementation of the PNN algorithm. Hence we
transformed the algorithm into fixed point prior to
hardware implementation. The width of the fixed point
data path was determined by simulating variable bit
operations in C and comparing the results obtained from
the original algorithm in floating point. Once the fixed
point classification of the Blackhills data set yielded the
same results as the floating point version, data path width
for the FPGA implementation was no longer varied.

Figure 5 shows the data flow diagram for the
hardware implementation of the PNN classifier. The
number of bands (d) was fixed to 4, the maximum value
of the number of weights per class (Pk) was fixed to 512,
and the maximum number of classes (k) was set to 16. As
shown in equation 1, there are two constants, K1 and K2,
that are class dependent. These constants are pre-
calculated on the host and downloaded to memory banks
residing on the FPGAs.

The weights memory was mapped to the HMEM
SRAM. Due to the lack of space on the XFPGA, the K1
multiplier and the class comparison blocks were moved to
the host. These calculations amount to k (number of
classes) multiplications and comparisons per pixel
classification. Overall, they do not account for a
significant amount of the computation, leading to a small
performance penalty. A 4-bit register holds the number of
classes. This register is initialized by the host before
loading the FPGAs. The weight memory can be as large
as 16*512*4*2bytes = 32768 16-bit words. The weight

Figure 2 - G900 Spectrum System

Figure 3 - Algorithm Partitioning

Figure 4 - X213 Block Diagram

values are 10-bits wide. Since each class can have up to
512 weights, an array that holds the number of weights
for each class is used. The arrays’ data inputs are
connected to the HBUS allowing visibility from the host
application.

The Subtraction Unit subtracts W, a 4 x 10-bit element
vector for W (w0, w1, w2, w3) and X (x0, x1, x2, x3).
The result of the subtraction ranges from -1023 to 1023,
requiring 11 bits to be represented in two’s complement
format. The Square Unit multiplies the 11-bit elements of
the Y vector by themselves (t0 = y0 * y0). The values of
the elements of vector T range from 0 to 1,046,529,
asking for 20 bits to be represented in two’s complement
format.

The Band Accumulator Unit adds the 4 elements of
the T vector delivering u, which value ranges from 0 to
4,186,116, requiring 22 bits. The K2[K] Memory holds
the K2 values for each class. K2 = ½ σΚ

−2 , where
σΚ varies between 2 and 12, with increments of 1. As a
result, K2 varies between 0.125 (σ = 2), and
0.003472 (σ = 12). The largest value of K2 = 0.125 is
represented in binary by 0.001. In order to increase the
precision of the multiplication, the values of K2 are stored
with the decimal point shifted to the right by 2 (a multiply
by four effect). After K2 is multiplied by u in the
Multiplier 1 Unit, the decimal point of the result of the
multiplication is shifted to the left by 2 (divide by 4
effect). Since this is a representation issue, no hardware is

necessary to perform the shifts in the YFPGA, only the
host needs to stores the values in the K2[K] memory in
the above mentioned format. The K2 Multiplier Unit
multiplies the K2 values for each class by the accumulated
values of the difference between a pixel and a weight
vector. It delivers a 44-bit result to the TO_XFPGA unit.
Bits 0 to 23 represent the fraction portion (remember that
the decimal point is shifted to the left by 2), and bits 24 to
43 represent the integer part of the result. However, the
next operation is to extract the exponential of the negative
of this number. Given the precision of the follow-on
operations, any number above 24 will yield 0(zero) as a
result. Thus, if any of bits 43 to 29 is set or both bits 28
and 27 are set, the result of e-x should be zero. Only 28
bits are passed on to the Exponential LUT Unit, and they
are bits 1 to 28. Bit 0 and bits 29 to 43 are discarded. It
was also found that a considerable number of results of
the multiplication are zero, which indicates that the result
of the exponential should be one. In order to save
processing steps in this case, the output of the multiplier
is tested for zero, and a flag is passed to the Exponential
LUT Unit, indicating that its result should be 1.

A look-up table is used to determine the value of e -a.
If we assume that a = b + c, then:

e -a = e -(b + c) = e -b . e -c

Since a is a 28-bit binary number, the value comprising
bits 27 to 14 of a represent b, and the value comprising

Figure 5 - PNN Data Flow Diagram

bits 13 to 0 of a represent c. The range of values of b and
e -b are:

00000.000000000 <= b <= 10111.111111111, or
 0 <= b <= 23.9980469, which results in
 0.9980519 >= e -b >= 3.78*10-11

The range of values of c and e -c are:

00000. 000000000 00000000000001 <= c <=
00000.000000000 11111111111111, or

 1.19*10-7 <= c <= 1.8919*10-3, which results in
 0.999999881 >= e -c >= 0.998109888

The values of e -b and e -c are previously calculated
and organized into a look-up table. At run time, the
values of b and c are used to address the look-up table
stored in memory (XMEM SRAM). The values of e -b and
e -c retrieved from the look-up table are then multiplied to
give the value of e -a. The values stored in the look-up
table are 32-bit wide. The result of the multiplication is
64-bit, but only the most significant 32 bits are sent out.
As a result,

3.77*10 -11 <= e -a <= 0.998051781.

The Class Accumulator Unit sums up all the
comparisons between a given pixel and all weights of a
given class, and outputs the result when it receives a flag
indicating that the data to add to the accumulator refers to
the last weight in a class. The output of the Exponential
Multiplier Unit range is 3.77*10 -11 <= d <= 0.998051781.
Thus, the largest accumulated value is 0.998051781 * 512
(max. # of weights) = 511.002511872. In order to keep
the precision of d, the accumulator is extended to 40 bits
to accommodate the original 31 bits after the decimal
point and 1 bit before the decimal point, and the new 8
bits before the decimal point. Each class has a K1 value
associated with it. The value of K1 is determined by the
following formula:

K1 = 1 / [(2¶)d/2 σκ
d Pk]

The result of the multiplication of K1 by the
accumulated differences between a pixel and all weights
in a given class is used to be compared with all other
classes to determine the largest result, which indicates in
which class a pixel most probably belongs to. In order to
keep the values being multiplied in the same range
allowing us to use fixed point arithmetic, the values of K1
are normalized. Given d, σκ, and Pk, the host program
calculates all K1 values, and divide them by the largest

one. The result is one value of K1 equals to 1 and all the
others below 1. The K1 Multiplier Unit multiplies the 40-
bit result of the Class Accumulator Unit by the 32-bit K1
value from the K1 Memory Unit, and outputs a 40-bit
result to the g register in the Class Comparison Unit. The
Class Comparison Unit receives a value that represents
the comparison between a pixel and all weights in a class,
and compares this value against the values generated for
all other classes. At the end of the calculation of all
classes, it outputs a code that represent the class which
presented the largest value.

3.3 The host software

The software that was developed for the PNN
algorithm that executes on the host processor was written
in the Java programming language. We selected the Java
programming language for several reasons. The language
supports software reuse, native methods, remote method
invocation, and it has a built-in security manager.
Software reuse allows methods and other Java objects to
be used repeatedly in different applications. Native
methods allow legacy code (old software written in
another language) to be called directly from Java
methods. The security manager and remote method
invocation allow methods to be executed on remote CPUs
with the system taking care of network traffic errors,
security, etc.

The Spectrum system, used for development of the
hardware modules, contains drivers for interfacing to the
FPGA devices that are only available in the C
programming language. Java, was a very wise choice for
a programming language since native methods, allow one
to call C routines directly from Java. This is
accomplished by building a dynamic link library that
contains the C objects and calling these C functions
directly from a Java method.

The application was implemented using a client/server
methodology to facilitate future implementation of remote
versions of the image classification algorithm. The server
interfaces directly to the reconfigurable accelerator via the
C drivers. It receives a block of pixels from the client,
initiates the classification of each of the pixels on the fpga
accelerator, gathers the results into a block of classified
data, and sends the results back to the client. The client
software controls the user interface, image data
input/output and translation, in addition to
communication with the server.

By selecting Java as a programming language and
separating the program into client and server subsystems,
the client software is completely independent of the
operating system that will execute the client program.

Only the server contains code that is not only dependent
on the operating system used, but also depends on the
specific reconfigurable accelerator that has been selected.
Hence, we are poised to implement a version of the PNN
algorithm that can be executed on a remote machine
found anywhere on the Internet.

4 Performance analysis

An initial version of the PNN Classifier algorithm was
developed and executed on a 200MHz single processor
Digital Equipment Corporation (DEC) Alpha
workstation. This implementation, written entirely in C,
required 12 minutes to classify the complete Blackhills
data set. We also implemented the same algorithm on a
Pentium PC running at 166 MHz. An optimized version
of the algorithm implemented in Java, required 21
minutes 57 seconds, while a C implementation of the
algorithm that was called from a Java method required 30
minutes 17 seconds. Please note that a Java
implementation of the algorithm performs very well even
though the language is interpreted.

By augmenting the PC with the Spectrum System G-
900 with a single X213 module running the PNN
classifier, the processsing time was reduced to 2 minutes
21 seconds (an acceleration of 9.34 times that of the Java
software version.) By adding a second X213 module, 2
pixels are processed at the same time. The image
classification time is then reduced to 77
seconds yielding a speedup of 17.10 over the Pentium PC
alone, and 9.35 times faster than the DEC Alpha. This is
approximately twice as fast as the single module version.
Since the pixel classification does not depend on
neighboring pixels, our implementation is easy to extend
to several processing elements if hardware resources are
available. We expect that with the addition of more X213
modules, the acceleration rate can be increased until the
problem becomes IO bounded (CPU time required for
input/output dominates total execution time.)

Also, the FPGA implementation is not fully optimized
since the complete algorithm was not incorporated into
the FPGA. Higher performance could be achieved if the
K1 multiplier, the class comparator, and a FIFO memory
were included on the FPGA. With the addition of these
components, computation and data transfer could occur
simultaneously.

5 Conclusions

It was shown that the implementation of a probabilistic
neural network multispectral image classifier on an
adaptive computer yields an order of magnitude

performance increase over high end workstations. It was
also shown that the combination of Java and an adaptive
computer presents a potential solution for the remote
processing of computation intensive scientific algorithms.
The two technologies enable a new computing paradigm
of distribuited, and reconfigurable data processing.

The disadvantages of FPGA based computing lie
mostly on the maturity of the technology. The application
development process requires new thinking. The FPGA
devices themselves have not yet achieved the density –
number of gates – and the flexibility to enable a larger set
of applications. The development tools are either
hardware or software oriented, and do not fully explore
the capabilities of FPGA based computing. As a
consequence, a wide set of skills are required to design
applications that fully exploit the benefits of the new
technology. As the technology develops, however, better
tools and FPGA architectures will be available to enable a
new class of application designers.

References

[1] S. R. Chettri, R. F. Cromp, M. Birmingham, “Design of
neural networks for classification of remotely sensed imagery”,
Telematics and Informatics, Vol. 9, No 3, pp. 145-156, 1992.
[2] S. R. Chettri and R. F. Cromp, “Probabilistic neural network
architecture for high-speed classification of remotely sensed
imagery”, Telematics and Informatics, Vol. 10, No 4, pp. 187-
198, 1993.
[3] P. Athanas and L. Abbott, “Real-Time Image processing on a
Custom Computing Platform,” IEEE Computer, Vol. 28, No 2,
pp 16-24, February 1995.
[4] N. Shirazi, P. Athanas, and A. Abbott. “Implementation of a
2-D fast fourier transform on an FPGA-based custom computing
machine”, Proceedings of the 5th International Workshop on
Field-Programmable Logic and Applications, pp. 282-292, FPL
August/September 1995. Lecture Notes in Computer Science
975.
[5] M. Rencher, B. Hutchings, “Automated Target Recognition
on Splash-II”, IEEE Symposium on Field Programmable Custom
Computing Machines, pp 232-240, April 1997.
[6] N. Tredennick, “Get ready for reconfigurable computing”,
Computer Design, pp 55-63, April 1998
[7] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger; U.
Kaiserslautern, “On Reconfigurable Co-Processing Units”,
Proceedings of the 5th Reconfigurable Architectures Workshop
(RAW'98) March 30, 1998
[8] D. L. Verbyla , “Satellite remote sensing of natural
resources”, Lewis Publishers, 1995
[9] Giga Operations Corporation, “Spectrum Reconfigurable
Computing Platform Documentation”

